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Foreword 

This report outlines progress on program for 
the period Oct 1/2013 to Mar 30/2013. 
It is also the final report for the program 
containing a program summary in the last 
section. 
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Statement of Problem Studied 

• We address the problem of calibrating 
predictive models of ground vehicles in order 
to enable mobile robots (UGVs) to be more 
informed about their own mobility. 

• UGVs predict their own motions as a basic 
aspect of every decision they make. 

• Hence poor models present a fundamental 
barrier to high performance UGVs. 
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Motivation 
• Here is a motivating  example: a classic failure mode for the UPI program on the Crusher 

platform that motivated the original proposal.  
• UGV is trying to make a very sharp turn but continually understeers. Feedback cannot 

remove the error because it is persistent. Eventually the turn becomes impossible. This 
occurred painfully often in some field tests. It would end a real UGV mission in failure. 

• A system which can predict how much it understeers can simply compensate predictively 
and this problem is eliminated.  

• The missing science is that slip depends on terrain mechanical properties (which depend on 
present and recent weather), vehicle, vehicle motion, slope, etc. and perception sensors 
cannot measure what is necessary. It has to be learned from experience. Hence our project. 

Time t+2 
Robot understeers again. 
Now turn is impossible. 

Time t 
Robot needs to turn sharply. 

Time t+1 
Robot understeers.  
Now needs to turn more sharply. 

max  
curvature 

Nominal path  
(assuming no wheel slip) 
Actual path  
(with slip) 

new command 
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Goals for Performance Period 

• Our goals for this performance period were: 
1. improve our results for perceptual cueing and for slip model aided 

model predictive control. 
2. incorporate slip constraints into Differential Algebraic Equation 

(DAE) models of wheeled mobile robots.  
3. Publish Data Logs: Allow other researchers access to the multi-

vehicle, multi-terrain data logs for research on vehicle mobility 
modeling. 

7/6/2014 Vehicle - Ground Model Identification 7 



Summary of Most Important 
Results 

• The following large number of slides is organized analogously to those of 
the last report.  

• However: 
– Results for this reporting period are far more definitive due to more extensive 

experiments using an excellent platform. 
– Most of the imagery is improved and related directly to the experiments performed. 

• Part of the intent is for this material to perform double duty as the basis 
of subsequent publications. 
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Platform Details: Husky 

• We used the Husky robot manufactured by Clearpath robotics to run the 
experiments on Perceptual Cueing as well as Model Predictive Control. 

• Husky is a skid steered vehicle with the wheel rotation of both wheels on 
each side coupled together while remaining independent of the rotation 
of the 2 wheels on the other side. Skid steer was chosen because it is a 
high slip configuration relative to alternatives like Ackerman steer. Such 
platforms are more squarely Army relevant. Also, our work should 
matter more on such platforms.  

• The platform has dimensions of 0.67m (Width) x 0.99m (Length) x 0.39m 
(Height) and drives at a maximum speed of 1m/s. 

• The robot was retrofitted with a camera and a pose system along with an 
onboard computer.  



Platform Retrofit 
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AVT GT1920C 
GigE Camera 

Pose System:  
Novatel OEMV-3 GPS 

Receiver  
+ 

 Honeywell HG1930 IMU 

Wheel Encoders 



Perception aided slip Prediction 
• Slip Prediction: We are trying to predict slip in pose estimation rather 

than slip in control. This approach allows us to eliminate dependence of 
our results on vehicle modeling error. 

• The principle we employ is that the appearance and the slip 
characteristics of terrain are correlated, so experience with terrain in one 
visual class can be used to predict slip characteristics for upcoming 
terrain based on its appearance. 

• In plainer terms once the system drives over gravel once, it should be 
able to switch on the gravel slip model if it can see that it is about to 
drive over gravel again.  

• The important scientific questions are: 
– How correlated is the visual and mechanical signature. 
– (Related) how separable are the classes. 
– How much does adding vision improve slip prediction. 

• In following slides, we evaluate the idea on a data set of color and slip 
data generated on our retrofitted Husky test vehicle. 
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Perceptual Cueing 
• We use the term to mean the use of perception to forecast and “cue 

up” the right models to switch on as terrain is traversed. 
• Example:  

• Grass and Trail look visually different and they slip differently. 
• We can predict how a terrain would slip by visually classifying it. 
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Trail Road: 
Slips with 
Slip 
Function 
f_1() 

Grass: 
Slips with Slip 
Function f_2() 



Unsupervised Approach 
• It is important to note that we follow an entirely unsupervised approach for visually 

separating terrain types… 
– This ambitious approach does limit the learning ability of the algorithms relative to a 

human supervised approach. 
– However, it is significantly more practical because it can be done autonomously on 

highly diverse terrain. 
• The alternative supervised approach is not practical in many cases. The process of labelling 

terrain types in numerous images  would be too tedious in our application - especially on 
heterogeneous test sites. 

• Another impact of this approach.  
– Lacking ground truth labels from a human supervisor, we have no basis for quantifying 

terrain classification error rates separately. 
– While this would be useful in a well engineered system, it is irrelevant in a proof of 

principle effort if the technique turns out to work anyway. Instead we concentrate on 
the bottom line -  the slip position prediction error – and the technique does work 
anyway. 

• If the system confuses gravel and asphalt but still predicts slip better, it is a success rather 
than a failure because the system can teach itself effectively without human intervention.  
An unsupervised success is far more significant to robotics and eventual deployment than a 
supervised one. 
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Terrain Projections 
• We create an elevation map of the terrain using elevation measurements from the  onboard GPS 
• Using the intrinsic  & extrinsic camera to IMU calibration matrix, we transform a square grid in 

world coordinates (latitude, longitude, elevation) into a quadrilateral in image space (xpix, ypix), 
using matrix multiplication.  

• Left: Geo-referenced elevation map, Right: Image from onboard camera 
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Feature Generation 
• Each quadrilateral of some fixed chosen size in an image is represented 

by a feature descriptor. 
• This descriptor is simply a numeric vector that attempts to capture, in a 

few numbers, the visual information it contains.  
• We implemented the following three feature generation algorithms, 

elaborated in subsequent slides. They are: 
I. F1: Color – L*, a* and b* channels 
II. F2: Color Textons 
III. F3: Maximum Response (MR8) Filter Bank Textons 

 

7/6/2014 Vehicle - Ground Model Identification 19 



Table Of Contents 

• Statement of Problem Studied 
• Summary of Most Important Results 

– Perception aided slip prediction 
• Terrain Projection 
• Feature Generation 

– Color 
– Color Textons 
– MR8 Textons 

• Classification 
• Class Selection 
• Learning Mobility Characteristics 
• Experimentation Setup 
• Experimental Results 

– Model Predictive Control 
• Metrics for Reporting Period 
• Conclusion / Outlook 

7/6/2014 Vehicle - Ground Model Identification 20 



Feature Generation F1: Color 

• Color space is the space of red-green-blue points in 3D or some 
transformation of it.  

• L,a,b is a color space  designed to approximate human vision: 
•  L: represents the lightness of color,  
•  a: position between red/magenta and green 
•  b: position between yellow and blue 
• The feature descriptor is computed by calculating the mean L, a and b 

values over all the pixels in the image quadrilateral. 
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F1: Color 

For each patch calculate: 
1. Mean (L, a, b) 
2. Variance (L, a, b)  
3. Sample size (w) 

Feature Vector:  

L mean a  
mean 

b 
mean 
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Feature Generation F2: Color Textons 

• Textons refer to fundamental micro-structures in natural images and are 
considered to be the “atoms” of pre-attentive human visual perception. 

• Several published studies exist on finding the best texton representation 
to describe texture in images.  

• In this method, a texton is computed by obtaining a 5x5 local region in a 
3 channel image, around each pixel in the image quadrilateral, producing 
a 75 element vector  
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5 x 5 patch -> 3 channels = 75 element feature vector/ pixel 

Training Images 



Texton Generation 

• The “Bag of visual words” is a common technique in machine 
learning that creates a sparse vector of occurrence counts of 
a “vocabulary” of local image features.   
 

• The vocabulary is generated on a set of training images by 
finding the exemplar descriptors over all training feature 
descriptors (75 element vector) using a famous algorithm 
called K-means.  
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Using Color Textons 
• This 75 element vector is mapped to its closest element (in Euclidean space) in a 

bag of visual words. 
• For each image quadrilateral, a histogram of the frequency of matched texton 

vector is computed. 
• With a Bag of words size of N, a histogram of N elements serves as the feature 

vector. We use 10 as the size of our dictionary. 
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For each pixel in patch calculate: 
1. BOW sized vector (normalized) 
2. Sample size (w) 

Feature Vector:  

O
cc

ur
re

nc
e 

Fr
eq

ue
nc

y 

Texton Number 
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Feature Generation F3: MR8 Textons 
• MR8 Textons are computed by convolving 

images with a filter bank to generate filter 
responses. 

• The MR8 filter bank consists of 38 filters 
but only 8 filter responses.  

• The filter bank contains filters at multiple 
orientations but their outputs are 
''collapsed'' by recording only the 
maximum filter response across all 
orientations. This technique achieves 
rotation invariance.  

• The filter bank is shown opposite and 
consists of a Gaussian and a Laplacian of 
Gaussian (these filters have rotational 
symmetry), an edge filter at 3 scales and a 
bar filter at the same 3 scales.  
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Using MR8 Textons 
• The 24 element vectors are clustered to compute a Bag of Words 

of size 10 
• Similar to the color textons described earlier, frequency 

histograms are computed for each image quadrilateral. These are 
the feature vectors used for classification  
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Apply MR8 filter bank on each pixel for L,a,b channels 
Obtain 8 x 3 filter responses = 24 element vector  

Training Images 
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Feature Classification 
• We use a generative algorithm known as Gaussian Mixture Models for 

learning. This algorithm imposes the assumption that each terrain class 
has been sampled from a Gaussian distribution.  

• Using the K-Means algorithm we find the mean and variance of these 
Gaussians. Therefore for 3 different Terrain types we compute 3 clusters. 
For each feature vector, a probability is computed with which it would 
have been sampled from either of the terrain types. The class with the 
highest probability wins the class assignment. 

• Below is an illustration of the data for grass and asphalt using the “L-a-b” 
feature vector. 
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Feature Vector:  

L* mean a* mean b* mean 



Weighted Class Selection 
• Once the distribution parameters (mean, variance) for each terrain type have 

been computed, each feature vector (for an image quadrilateral) is matched to 
the closest distribution. 

• We calculate distance between the L-a-b feature vectors using Mahalanobis 
distance. The distance for the texton histograms (color, MR8) are calculated with 
the Chi-Squared metric. 
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1. Matched Cluster Center 
2. Distance to Center 
3. Sample size (w) 

Number of Views x 



Table Of Contents 

• Statement of Problem Studied 
• Summary of Most Important Results 

– Perception aided slip prediction 
• Terrain Projection 
• Feature Generation 
• Classification 
• Class Selection 
• Learning Mobility Characteristics 
• Experimentation Setup 
• Experimental Results 

– Model Predictive Control 
• Metrics for Reporting Period 
• Conclusion / Outlook 

7/6/2014 Vehicle - Ground Model Identification 32 



Weighted Class Selection 
• A particular grid cell on the ground can be viewed in multiple images. 

Each image quadrilateral (view)  has its own belief of what class a 
particular terrain patch belongs to.  

• We use a weighted voting mechanism to finalize best class match. Each 
image quadrilateral casts a vote between [1, m] of its belief, where m is 
the number of classes 

• Votes are weighted based on two parameters: 
• (i) Size (in pixels) of image quadrilateral,  
• (ii) inverse of distance to nearest cluster center.  
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1 … … K 

For all views of a grid: 
accumulator[matched_center] = projection_size/distance_to_cluster; 

match = argmax(accumulator); 

Accumulator 
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Slip Model 

35 

• Velocity driven model 
• Unconstrained kinematic 

differential equation 
• Barring ballistic motion, this is 

the general case. 

pose rate (ground-fixed frame) velocities (body frame) 

xx VV δ,
yy VV δ,

θθ δVV ,x

y θ

velocity error (i.e. wheel slip) 



Slip Model 

• The model for calculating slip velocities in (x,y, yaw) is 
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• We learn the coefficients a_i for the visually classified 
terrain using a non-linear iterative  least  squares fit 
(Gauss-Newton algorithm). 
 

• The mobility data is divided into a training set (700 
seconds) and a test set (200 seconds). 
 

• A mobility model is learned for each individual terrain 
type with data within the training set. 
 

• For each terrain class in the test set, the respective 
mobility model is applied and the position estimation 
error is computed. 
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Learning Mobility Characteristics 
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Experimentation Test Site 
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Test Area:  
3 different terrain types 

Grass Gravel Asphalt 

• The test area presents four different types of 
terrain transitions. 



Data Collection (Video) 
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Experimental Setup 
• For this experiment we used 3 different terrain types. 
• An average model is also learned. It treats the entire area as if it was 

homogeneous.  
• To gauge perceptual cueing performance, we apply each slip model to a 5 second 

vehicle trajectory. As shown in the figure, a second slip model is applied right 
after the transition if perception said a transition was going to occur.  

• The entire vehicle path (several meters) is split into 5 second trajectories and slip 
is repeatedly predicted for each 5 second trajectory. 

7/6/2014 Vehicle - Ground Model Identification 41 

The basic idea 
of perceptual 
cuing across a 

Terrain Transition 

Apply Grass 
Mobility 
Coefficients 

Apply Flat 
Ground 
Mobility 
Coefficients 

Each quadrilateral 
in image is a 
30cmx30cm grid 
on the ground 



Perception Results:  
Classified Terrain Maps 
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MR-8 Textons Color Textons 

Color Statistics 

Grass 

Trail 

Asphalt 

• Comparing the terrain classification results with the imagery of the experimentation site, 
we see that the textons perform much better than simple color statistics. This is expected 
given the importance of texture of the terrain over simple color. 

• However we can only analyze this qualitatively since we perform unsupervised 
classification. This is a more practical approach for easily deploying on the field, because it 
does not require creating a hand labeled dataset to train on. 

 



Pose Instrumentation 
• Terminology: Pose = Position + Orientation. 
• The system relies on a pose estimate both 

during training and during operation.  
• We need a pose solution to be able to span the 

time from when terrain is seen to when it is 
touched by the wheels. 

• The vehicle is not a point; the camera is not 
where the pose box is; neither is where a 
particular camera pixel lands on the ground. 
Hence attitude needs to be known too. Attitude 
data allows us to determine precisely which 
camera pixel hits the ground  where. 
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Pose Architecture 
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GPS Solution 

We compute two solutions in our pose estimation system: 
Local Pose: Odometry + Inertial 
Global Pose: GPS + odometry + Inertial   



Experimental Design : Dual Pose 
• We will show that neither the training nor the operational system relies on highly 

accurate pose, or on a truly global (georeferenced) position estimate. We know 
this because we tested with two ground truth pose solutions. 

• Testing with dual poses allows us to assess deployment issues with less capable 
instrumentation.  

• A system reliant on RTK GPS would not be very practical and we show it to be 
unnecessary.   
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Experimental Design : 
Contradiction 

• It is apparently contradictory to use a pose system corrupted by wheel slip (in the 
odometry aiding) in order to calibrate an odometry slip model. How does a 
broken sensor calibrate itself? 

– However, a good gyro (present in both local and global pose solutions) renders angular slip perfectly 
observable and our results have always shown this to be the dominant slip behavior. 

– So while our pose solution is corrupted by wheel slip, the fused solution is not corrupted much 
because it is the gyro that is really doing the measuring that matters. The function of odometry in 
the fused solution is to damp accelerometer drift. 

• That leads to the question of why we need to predict slip at all if we can measure 
it. Response: 

– We can only measure angular slip but translation slip is correlated to it so a slip model makes both 
observable. That correlation model is of extreme value in inertial navigation because translation is 
the dominant source of remaining error in pose estimation. 

– You cannot measure the future. In true prediction problems, gyros are useless and you are forced to 
use a model. We are able to produce a predictive model from experience gained during those times 
when you could measure it. 
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Pose Solution Quality 
• Pose error is furthermore somewhat exacerbated in our experiments 

by extreme driving patterns which introduce more wheel slip. We 
often used extreme driving patterns to maximize signal-to-noise and 
to stress test our conclusions. However, the pose system can handle 
this for reasons given in last slide. Specific performance numbers 
below. 

• Heading Error: In both local and global pose, our tactical grade gyro exhibits an 
angular error drift of a mere 10 deg/hour1  because both solutions use a gyro 
for heading. 

• Global Pose Translation Error: The GPS aided pose solution has 1 cm or so 
absolute position error. 

• Local Pose Translation Error: The local pose solution has a translation 
error of 1% over every 100 meters if driven in a straight line.  

• IOW, for driving 1 meter to reach the ground in view, the 1 cm of 
error we experience (in correlating a camera pixel with the spot 
under the wheel), is negligible compared to the benefit of cueing a 
model transition that affects up to 5 meters of subsequent 
prediction. 
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1:  “Mere” because we care about the angular error that accumulates over the second or two it takes to drive over 
the terrain in view. 10 deg/hr is 50 MICRO rads per second.  



Distinguishing Slip Signals 
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• This graphic illustrates the slip analysis we perform using perceptual cueing. Each 
curve is a path simulated by integrating velocity measurements over 5 seconds. 
As described earlier, the integration velocity is determined as  

 V_int = V_nom + V_slip. 

 
 

5 second  predicted path: 
No Slip Model 

Average Slip Model 
Grass Slip Model 

Dirt Road Slip Model 
Local Pose Solution 

GPS Aided Pose Solution 

• We iteratively run a sliding 
window through the data to 
get the next path. The shift 
of the window is 1 second. 
Hence for a 5 second path, a 
given segment will appear at 
most 5 times 

• The pose and velocity 
solution data is at 100Hz. 
Therefore, each path 
segment consists of 500 data 
points. 

Position Estimation Error (m) 



Using the Slip Model 
• The nominal velocity (V_nom) is the velocity computed 

from wheel rotations and a no-slip assumption 
represented in vehicle frame. This term is corrected for 
slip by adding a V_slip term computed by a calibrated 
kinematic model. 
 

• The curve without a slip model is computed with V_slip = 
0. As is evident in the cartoon, the difference in angular 
velocity results in a large position prediction error over 
time. 
 

• The perceptually cued model swaps the slip parameters 
applied in forward integration based on a perception 
prior. 
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Position Estimation Error: 
 Local Pose 
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• At a top speed of 1m/s, the Husky would’ve travelled 5 meters. 8 cm is significant 
estimation error even with a well calibrated average model. We show that this can be 
greatly reduced by incorporating a perception prior (perceptual cueing). 

• The  estimation error above is the average error (illustrated in the graphic) of the end 
points of paths computed from slip-compensated odometry vs the pose system 
“ground truth” path. 

• Since this is computed using a local pose solution, the estimation error is caused 
primarily due to angular slip (which is usually the most dominant). 
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Position Estimation Error: 
 Local Pose 

7/6/2014 Vehicle - Ground Model Identification 52 

0
5

10
15
20
25
30

Color Statistics Angelova
Textons

MR8 Textons%
  I

m
pr

ov
em

en
t o

ve
r 

av
er

ag
e 

sl
ip

 m
od

el
 

• Same data as graph on last slide. 
• This graph is simply the percentage improvements (reduction of estimation error) 

for the perceptually cued slip models over an average model. 
• For example using the numbers in the previous graph:  

• % improvement = 100 * (Average_Slip_Error  –  Color_Statistics_Error) /  Average_Slip_Error 

 

 
 



Position Estimation Error: 
 Global Pose 
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• The above graph is generated using a global pose solution, that is aided with GPS 
data of accuracy within 2cm. Therefore this solution can be considered as ground 
truth. 

• As described earlier, the global pose solution has minimal translational error so it 
allows us to observe such error in the slip-compensated odometry solution.  

• Hence the estimation error for slip-aided odometry using global pose is higher 
than that for local pose.  

 
 



Position Estimation Error: 
 Global Pose 
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• The percent improvement over an average model is computed as described previously. 
• We see that the color statistics model performs worse than an average model. This is 

because the terrain classification with this feature set is actually not very good as we have 
already seen so it simply means we should not use this feature set.  

• As suggested on slide 45, the estimation-error-of-both-average-and-cued-models is larger 
when global pose is used to measure slip. However the difference between estimation-
error-of-average-and-cued-models is essentially the same, so the percent improvement is 
reduced. For MR8 Textons, the local pose calculation is (8-5)/8 = about 30%. For global pose 
it is (10-8)/10 = about 20%.  So this is the same conclusion but from a better measurement. 
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Perceptual Cuing Results 
• We have shown a measureable improvement in prediction error 

for a 5 second prediction horizon with respect to an average 
model that does not distinguish terrain types.  

• The improvement magnitude is ~28% for MR8 textons and ~18% 
for color based features for a local pose ground truth solution. The 
improvement is slightly lower for a global pose ground truth 
solution.  

• In both cases, more clusters (terrain classes) performs better. This 
might however lead to overfitting and perhaps not generalize 
well. 

• More extreme terrain transitions (like asphalt to gravel) are likely 
to see higher prediction improvements.  

• We have demonstrated with high confidence that slip prediction 
can be improved with perception. 
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Model Predictive Control  
• In year 2012, we showed the effects of slip on open-loop Model 

Predictive Control 
 
• This year, the  goal is to show the effects of slip on  Model Predictive 

Control  approach to path following.  This is a more realistic scenario as 
every fielded ground robot runs on closed loop control.   

 
• Initially this was developed in simulation and we have transition this to a 

real vehicle in this reporting period. 
 
• The vehicle is required to “follow” a desired path adhering to the 

following constraints 
– The generated trajectory should take into account the following 

constraints: path smoothness, velocity (linear and angular) limits, 
lateral and longitudinal acceleration limits. 
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MPC - Platform 
• Our platform was 

Husky, a 4x4 skid-
steered, all-terrain, all-
electric vehicle built by 
Clear Path Robotics LLC. 

• We retrofitted the 
platform with wheel 
encoders, a pose 
system and a (forward 
looking)  AVT Prosilica 
GigE camera  

 
 

7/6/2014 Vehicle - Ground Model Identification 58 



MPC – Pose system 
• IMU for the pose system is a 

Honeywell HG1930 with MEMS 
based accelerometers and gyros 
(drift rate of about 10 degrees per 
hour) 

• A NovAtel OEM V-3 GPS receiver 
card along with an Antcom G5Ant 
GPS antenna is used for receiving 
GPS measurements 

• Two wheel encoders on the aft 
wheels provide raw odometry 
measurements 

• A “smooth”, “local” pose solution 
is generated using the inertial 
measurements and wheel 
encoder measurements at 100Hz 
for the controls 

• “Ground truth” data is generated 
by post-processing the “rover” 
GPS and inertial data with the 
“base” station’s GPS observations 
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MPC – Problem Formulation 

• We pose the task of model predictive path following as an optimization 
problem  

• The following equation describes the form of the objective function we are 
looking to optimize 

 
𝑱𝑱 =  

𝟏𝟏
𝟐𝟐

� (𝒙𝒙𝒌𝒌𝑻𝑻 𝑸𝑸𝒙𝒙𝒌𝒌) + 𝒖𝒖𝒌𝒌𝑻𝑻𝑹𝑹𝒖𝒖𝒌𝒌

𝒏𝒏

𝒌𝒌=𝟏𝟏
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒖𝒖)

 

– 𝑱𝑱 is the objective functional 
– 𝒏𝒏 is the number of time steps to perform the optimization 
– 𝒙𝒙𝒌𝒌  is the state at time step 𝒌𝒌 of dimension (1x𝒍𝒍) 
– 𝒖𝒖𝒌𝒌 is the control effort at time step 𝒌𝒌  of dimension (1x𝒅𝒅) 
– 𝑸𝑸 is the 𝒍𝒍 x 𝒍𝒍 positive semi-definite weight matrix 
– 𝑹𝑹 is the 𝒅𝒅 x 𝒍𝒍 positive definite weight matrix  

 
• The state evolution (system dynamics) is given by the following equation 
 

𝒙𝒙𝒕𝒕+𝟏𝟏 = 𝑨𝑨𝒕𝒕 𝒙𝒙𝒕𝒕 +  𝑩𝑩𝒕𝒕𝒖𝒖𝒕𝒕 
 

– 𝑨𝑨𝒕𝒕 is the linearization of the state 𝒙𝒙𝒕𝒕 at time step  𝒕𝒕 
– 𝑩𝑩𝒕𝒕 is the linearization of the control 𝒖𝒖𝒕𝒕 at time step 𝒕𝒕 

 
• We solve this optimization problem using a receding horizon, iterative LQR  approach 
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MPC - State Vector 
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• The following fields make up the state vector at any given time 
1. 𝜹𝜹𝜹𝜹 – difference in longitudinal position (meters) 
2. 𝜹𝜹𝒚𝒚 – difference in the lateral position (meters) 
3. 𝜹𝜹𝜽𝜽 – difference in the yaw (radians) 
4. 𝜹𝜹𝒙̇𝒙 – the rate of chance of difference in longitudinal position (meters per second) 
5. 𝜹𝜹𝒚̇𝒚 – the rate of change of difference in lateral position (meters per second) 
6. 𝜹𝜹𝜽̇𝜽 – the rate of change of difference in yaw (radians per second) 
7. 𝒗𝒗𝒅𝒅 – the desired longitudinal speed (meters per second) 
8. 𝒌𝒌𝒅𝒅 – the desired curvature (1/meters) 

 

• The reference signal we are trying to follow is always the one generated by the 
pure pursuit follower.  However, it is trivial to swap this out with a compatible 
trajectory generated by a different means (direct driving commands, model 
predictive trajectory generator, high level path planner etc. ) 

• In other words, we are not trying to show a better control algorithm. We are 
trying to show that whatever the reference trajectory is, you can follow it better 
by compensating for slip predictively  in MPC. We are choosing whatever a slip 
free vehicle would do using a simple controller for our reference. 

 



MPC - Approach  

– We are given a desired path in the world to follow along with suggested speeds as well 
as the calibrated slip model of the vehicle and the terrain. 

 
– Every iteration of the algorithm, we do the following steps 

1. Localize the vehicle onto the path (find the point on the path that is closest to the 
vehicle) 

2. Compute the look-ahead point on the path – this is a point on the path we are 
trying to steer the robot to 

3. Forward simulate to predict the “no slip” path the robot would have traversed 
along with the set of controls under “ideal” conditions – no slip 

4. Forward simulate to predict the “slippy path” path the robot would have traversed 
when executing the controls generated in step 3 taking slip into consideration 

5. Compute the correction to be applied to the controls generated in step 3 using iLQR 
6. Pass the adjusted controls to the vehicle controller 
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MPC – Inner working snapshot 
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• Blue line denotes the high 
level desired path starting 
at the top and going down 

• Green line denotes the 
(reference) path the 
vehicle is predicted to 
traverse when slip is NOT 
considered 

• Red line denotes the path 
the vehicle is predicted to 
traverse when slip is 
considered but MPC is off. 

• MPC tries to minimize the 
errors between the green 
and the red paths 

 
 



MPC – Trials in Simulation - Setup 
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• Total path length 312.5 meters 
• Twenty 90 degree turns placed at various 

distances apart with  8 right turns and 12 left 
turns 

• Three scenarios of varying slip characteristics  
– Dirt (parameters learned from real world trial) 
– Sand Pit (parameters learned from real world trial) 
– Hard to turn left (parameters modified to simulate a 

desired behavior) 

• Maximum mission speed of 1.0 m/s 
 



Path Tracking in Simulation 
Video – 4X Speedup 
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Simulated Performance in Dirt 
Terrain 
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Algorithm/Performance Pure Pursuit MPC 

Cross Track Error 
(max/mean) (m) 

0.41/0.08 
 

0.29/0.02 



Simulated Performance in Dirt Terrain – A 
closer look 
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MPC  
performance is 
essentially 
perfect – 
within the 
pose 
estimation 
resolution 



Simulated Performance in Sand Pit 
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Algorithm/Performance Pure Pursuit MPC 

Cross Track Error 
(max/mean) (m) 

13.45/10.60 
 

0.38/0.14 

MPC  
performance is 
excellent. Pure 
pursuit fails 
utterly. 



Simulated performance in  Sand Pit – 
Zoomed In 
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Simulated performance in a “hard to 
turn” left scenario 

7/6/2014 Vehicle - Ground Model Identification 70 

Algorithm/Performance Pure Pursuit MPC 

Cross Track Error 
(max/mean) (m) 

5.03/0.54 
 

0.73/0.14 



Simulated Performance in “hard to turn 
left scenario” – a closer look 
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This is 
analogous to a 
military robot 
adapting 
automatically 
to battle 
damage. 



MPC Real World Trials Setup 
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• Two terrains (dirt and sand pit) of varying slip 
characteristics were used for the trials 

• Slip models were “learned” by driving the 
vehicle in the representative terrain similar 
to the perceptual cueing trials 

• Due to space restrictions, path lengths were 
limited to about 25 meters but their shape 
were representative enough to show real 
capability 

 



MPC Trials – Dirt Terrain 
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• The terrain was about 15 
meters wide and 25 
meters long 

• Terrain consisted 
primarily of packed dirt 
with occasional loose 
rocks and tufts of grass 

• Trials were conducted on 
a path with eight 90 
degree turns (4 left and 4 
right) spaced anywhere 
between 4 to 5 meters 
apart 

• Total path length is 41 
meters and max desired 
speed was 1.0 m/s 
 



Path Tracker Performance on  “Dirt 
Terrain” 
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Algorithm/Performance Pure Pursuit MPC 

Cross Track Error 
(max/mean) (m) 

0.75/0.20 
 

0.3/0.1 



MPC Trials – Sand Pit Setup 
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• The pit was 30 ft long, 15 
feet wide and 7 inches deep 

• The pit was filled with “fine” 
river sand – we wanted the 
vehicle to “slip” and “dig –
in” quite a bit as it made the 
maneuvers 

• Any turn >= 90 degrees 
immobilized the robot 

• Trials were conducted on a 
path that traversed the 
length of the pit and six 60 
degree turns (3 left and 3 
right) 

• Total Path length was 17.37 
meters and max desired 
speed was 1.0 m/s 
 



MPC Trials – Sand Pit (Performance Plots) 
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Sand Pit 
Boundary 

Cone 

Algorithm/Performance Pure Pursuit MPC 

Cross Track Error 
(max/mean) (m) 

1.54/0.17 
 

0.26/0.04 



Videos MPC Trials – Sand Pit (MPC)   
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MPC Pure Pursuit 



MPC Conclusion 

7/6/2014 Vehicle - Ground Model Identification 78 

• Trials in simulation and in the real world 
show that Predictive Control for accurate 
path following becomes a necessity as the 
slip characteristics of the terrain deviates 
from the ideal conditions of no-slip. 
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Data for Distribution/Data Paper 

• No new papers this time.  
• We are planning an IJRR “data paper” to give our data 

to the community. Such papers are very highly cited. 
• Proposed data includes: 

– Moblility logs (post-processed RTK-GPS pose, wheel 
odometry) for 3 different terrain (grass, dirt, parking lot) 
on the LandTamer (6x6 skid-steered) and the RecBot (4x2 
ackermann) on the same day. 

– Mobility logs from the UPI program on the Crusher (6x6 
skid-steered) (may need to get some kind of clearance for 
releasing pose and odometry data) collected at the 
following sites – Taylor, Gascola, Somerset, Fort Bliss and 
Fort Drum. 
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Program Summary 
• Because this is our last report, we want to 

summarize the most significant conclusions of 
the program. 

• The program addressed four questions (One 
phase per year): 

• Phase I: Data Gathering, Model Formulation, Off Line 
Calibration 

• Phase II: Data Gathering and Real-Time Identification 
• Phase III: Incorporation of Perception and Terrain 

Prediction 
• Phase IV Performance Measurement 

• Ultimately, we got a major positive result 
for each question. 
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Question 1: Model Formation 
/ Slip Prediction 

• Slip is Predictable. A 
substantial component 
of slip behavior is 
predictable based on 
measurements of 
vehicle state of motion 
or commands. Its 
uncertainty is also 
predictable in a 
statistical sense. 
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Actual 

Predicted with calibration 
Nominal, (assumes no slip) 

Pose covariance 

Pitch angle 
Roll angle 



Question 2: On Line Real-
Time Identification 

• Vehicles can calibrate 
themselves. Both 
systematic and 
stochastic slip models 
can be identified in real 
time, in seconds,  during 
system operation on 
typical trajectories, using 
sensors already in place.  

• We invented a new 
identification technique 
to do this and published 
in IJRR. 
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Question 3: Incorporating 
Perception. Perceptual Cueing 

• Perception can Help. 
Terrain properties 
observable with EOIR 
sensing can be 
correlated with slip 
experience to learn a 
mapping from terrain 
appearance to terrain 
mechanical properties 
that affect slip. 

• This can be done 
online, in a totally 
unsupervised manner, 
using sensors already 
on the robot. 
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Question 4: Predictive Control 
• Because we now know it 

can be done accurately, slip 
prediction is a major 
advance in performance in 
high performance / 
challenging conditions. 

• In our experiments, even a 
skid steered robot partially 
buried in the sand can 
follow a path accurately 
when a classical controller 
fails utterly in just a few 
feet of motion. 
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Overall Summary 
• The implications of our results for future Army robots 

may be profound. 
– Routine problems become more routine, hard ones 

become easy, and impossible ones become doable. 
• We have shown that robots can learn their own 

mobility and use the associated models to improve 
their state estimation and control. This can be done 
while operating, using the sensors already in place, 
with no human involvement. 
– Robots can also communicate with others about what 

they learn about terrain.  
• They can make the right decisions about what they 

can and cannot do, and they can more fully exploit 
their own performance envelope. 
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Overall Summary (Military) 
• When we started, we were not sure any of this was possible - or that it would matter. This 

was high risk, high payoff (6.1) work. 
• Our work has the following potential impacts on robots (or simply intelligent vehicles of any 

kind) in the Army. Taken from the proposal, and mostly realized by a few students in 4 
years… 

– … shown the capacity of combined perception, proprioception, prior maps, to advance the 
performance of UGVs in terms of their capacity to keep up with the force. 

– … advance the state of the art by enabling a new capacity to predict and manage the entrapment 
hazards which are an important Achilles heel of contemporary UGVs. 

– … enable higher performance UGV planning systems by providing better predictive models. This work 
should enable more effective obstacle negotiation, high speed path following, and high speed 
teleoperation. 

– … enable UGVs to compensate, in limited cases, for battle damage by learning the changes in their 
own mobility models and employing sophisticated controllers to compensate.  

– … enable appropriate behavior changes in UGVs in response to changing terrain and weather 
conditions. For example, UGVs might alter their plans to avoid certain slopes after a heavy rain. 

– …  a step toward enabling rapid adaptation of a fleet of UGVs to changing terrain and weather 
conditions based on having them share information about their experiences in theater. 

– … enable new simulation technologies like virtualized UGV proving grounds where terrain conditions 
can be changed by modulating the UGV predictive models. 
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Overall Summary (General) 
• Our work enables or takes us a step closer to all of the following “dreams” for the 

future. 
– To allow a robot car to deliberately skid sideways into a parking spot. 
– To permit a Mars rover to slide downhill to stop at a science target in precisely the way it 

intended. 
– To allow an automotive directional and stability control system, or automatic braking system, 

to sense the terrain and adapt its algorithm to experience. 
– To allow a UGV to automatically extricate itself from an entrapment hazard using something 

like the way we get our cars out of snow. 
– To allow any robot to execute maneuvers competently through the regime where wheel slip 

becomes a significant effect on any given terrain.  
• We did not show, for lack of time, that self calibration can be turned on and 

left on forever with no negative consequences. This is important for 
deployment but it is also expensive to show beyond reasonable doubt. 

• We stumbled on a better formulation of the mathematics of wheeled mobile 
robot dynamics under extreme mobility conditions. It is a particular form of 
Lagrangian dynamics that is convenient for encoding slip and terrain 
following etc. and is very very efficient. A grad student has begun exploring 
this more on the ARL rCTA program.  A new ARO program that takes all of our 
work to the next level could be based on this foundational result. 
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